Qu	Answer	Mark	Comment
1	$3x^{3} + 18x^{2} + Px + 31 \equiv Q(x+R)^{3} + S$ $Q = 3$ $3x^{3} + 18x^{2} + Px + 31 \equiv 3x^{3} + 9Rx^{2} + 9R^{2}x + 3R^{3} + S$	B1 M1	Q = 3 anywhere Attempt to expand and compare at least another coefficient, or other valid method
	R = 2, P = 36, S = 7	A3 [5]	One mark for each correct constant cao
2(i)	$\det \mathbf{M} = 4 \times 3 - (-1) \times 0$	M1	oe www
2(ii)	Area = $12 \times 3 = 36$ square units $\mathbf{M}^{-1} = 1 \begin{pmatrix} 3 & 0 \end{pmatrix}$	A1 [2] M1	division by their $\det \mathbf{M}$
	$\mathbf{M}^{-1} = \frac{1}{12} \begin{pmatrix} 3 & 0 \\ 1 & 4 \end{pmatrix}$	A1	cao condone decimals 3sf or better
	$\det \mathbf{M}^{-1} = \frac{1}{12}$	B1 [3]	cao condone decimal 3sf or better
2(iii)	det $\mathbf{M} \times \det \mathbf{M}^{-1} = 12 \times \frac{1}{12} = 1$ The inverse 'undoes' the transformation, so the composite of \mathbf{M} and its inverse must leave a shape unchanged, meaning the area scale factor of the composite transformation must be 1 and so the	B1	Seen or implied
	determinant is 1.	E1 [2]	Any valid explanation involving transformations and unchanged area

3	$\omega+1$	M1	Using a substitution
	$\omega = 2x - 1 \Rightarrow x = \frac{\omega + 1}{2}$	A1	Correct
	$\left(\frac{\omega+1}{2}\right)^3 - 4\left(\frac{\omega+1}{2}\right)^2 + 8\left(\frac{\omega+1}{2}\right) + 3 = 0$	M1	Substitute into cubic
	$\Rightarrow \frac{1}{8} \left(\omega^3 + 3\omega^2 + 3\omega + 1 \right) - \left(\omega^2 + 2\omega + 1 \right)$	M1	Attempting to expand cubic and quadratic
	$+4(\omega+1)+3=0$		
	$\Rightarrow \omega^3 - 5\omega^2 + 19\omega + 49 = 0$	A2 A1 [7]	LHS oe, -1 each error Correct equation
3	OR		
	$\alpha + \beta + \gamma = 4$		
	$\alpha\beta + \alpha\gamma + \beta\gamma = 8$	M1	Attempt to find $\Sigma \alpha \ \Sigma \alpha \beta \ \alpha \beta \gamma$
	, , , ,		
	$\alpha\beta\gamma = -3$	A1	All correct
	Let new roots be k , l , m then		
	$k+l+m=2(\alpha+\beta+\gamma)-3=5=\frac{-B}{A}$		
	$kl + km + lm = 4(\alpha\beta + \alpha\gamma + \beta\gamma)$		
	$-4(\alpha+\beta+\gamma)+3=19=\frac{C}{A}$	M1	Attempt to use root relationships to find at least two of $\Sigma k \Sigma kl \ klm$
	$klm = 8\alpha\beta\gamma - 4(\alpha\beta + \alpha\gamma + \beta\gamma)$		
	$+2(\alpha+\beta+\gamma)-1=-49=\frac{-D}{A}$		
	$\Rightarrow \omega^3 - 5\omega^2 + 19\omega + 49 = 0$	A1	Quadratic coefficient
		A1	Linear coefficient
		A1	Constant term
		A1	
		[7]	Correct equation

4	25 25 Per	B1 B1 B1 B1	Circle Centre 3 + 2j Radius = 2 or 3, consistent with their centre Both circles correct cao Correct boundaries indicated, inner excluded, outer included (f t concentric circles) Region between concentric circles indicated as solution SC -1 if axes incorrect
	$\sum_{n=1}^{\infty} {2 \choose 2} {n \choose 2}$	[6]	
5	$\sum_{r=1}^{n} r^{2} (3-4r) = 3 \sum_{r=1}^{n} r^{2} - 4 \sum_{r=1}^{n} r^{3}$	M1	Separate into two sums involving r^2 and r^3 , may be implied
	$= \frac{3}{6}n(n+1)(2n+1) - \frac{4}{4}n^2(n+1)^2$ $= \frac{1}{2}n(n+1)[(2n+1) - 2n(n+1)]$ $= \frac{1}{2}n(n+1)(1-2n^2)$	M1 A1	Appropriate use of at least one standard result Both terms correct
	$= \frac{1}{2}n(n+1)[(2n+1)-2n(n+1)]$	M1	Attempt to factorise using both n and $n + 1$
	$=\frac{1}{2}n(n+1)(1-2n^2)$	A1 [5]	Complete, convincing argument

6 When $n = 1, 2^{1+1}$	+1=5, so true for $n=1$	1		
Assume $u_k = 2^{k+1}$ $\Rightarrow u_{k+1} = 2^{k+1} + 1$	1 +1 E1	1	Assuming true for k	
$\Rightarrow u_{k+1} = 2^{k+1} + 1$ $= 2 \times 2^{k+1} + 1$	+ 2*** M	1 1	Using this u_k to find u_{k+1}	
$=2^{k+2}+1$	A	.1	Correct simplification	
$=2^{(k+1)+1}+1$				
	ven result with $k + 1$ replacing k . true for k it is also true for $k + 1$.	1	Dependent on A1 and previous E1	
Since it is true for integers.	or $n = 1$, it is true for all positive E1	1 [6]	Dependent on B1 and previous E1	

7(i)	$\left(0, \frac{-1}{8}\right), (-5, 0)$
------	---

7(ii)
$$x = \frac{5}{2}, x = \frac{-8}{3}, y = 0$$

7(iii) Large positive $x, y \rightarrow 0^+$ (e.g. consider x = 100) Large negative $x, y \rightarrow 0^-$ (e.g. consider x = -100)

7(iv)

7(v) x < -5 or $\frac{-8}{3} < x < \frac{5}{2}$

B1 B1

[2]

B1 B1 B1 [3]

B1

[3]

One mark for each point

SC1 for
$$x = -5$$
, $y = -1/8$

One mark for each equation

B1 Evidence of a valid method

B1 RH branch correct B1 LH branch correct [2]

B1

cao

cao

B1

[2]

8(i)	$\delta = 1 - i$	B1		٦
0(1)	<i>0</i> – 1 – J	Di		
	There must be a second real root because complex roots occur	E1		
	in conjugate pairs.	E1		
		[2]		
8(ii)	$\alpha + \beta + \gamma + \delta = 1$	B1		
	$\alpha + \beta + \gamma + \delta = 1 \Rightarrow 1 + (1 + j) + \gamma + (1 - j) = 1$	M1		
	$\Rightarrow \gamma = -2$	A1	cao	
	·	[3]		
8(iii)				
O(III)	(z-1)(z+2)(z-(1+j))(z-(1-j))	B1	Correct factors from their roots	
	$= (z^2 + z - 2)(z^2 - 2z + 2)$	M1	Attempt to expand using all 4 factors	
	$= z^4 - 2z^3 + 2z^2 + z^3 - 2z^2 + 2z - 2z^2 + 4z - 4$			
	$= z^4 - z^3 - 2z^2 + 6z - 4$		One for each of a , b and c	
	$\Rightarrow a = -2, b = 6, c = -4$	A3		
		[5]		
	OR			
	$\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = a = -2$	M2	Use of root relationships attempted, M2 evidence of all 3, M1 for evidence of 2 OR substitution to get three equations and solving	
		A1	a = -2 cao	
	$\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -b = -6 \Rightarrow b = 6$	A1	$b = 6 \operatorname{cao}$	
		B1 [5]	c = -4 (SC f t on their 2 nd real root)	
	$\alpha\beta\gamma\delta = c = -4$	[0]		
8(iv)	$f(-z) = z^4 + z^3 - 2z^2 - 6z - 4$	B1	f t on their a, b, c, simplified	
ð(IV)	Roots of $f(-z) = 0$ are -1 , 2 , $-1+j$ and $-1-j$	B1	For all four roots, cao	
	1, 2, 1, june 1	[2]		

9(i)	(2 1 5)(2a+1 2 1+5a)		
, ,	$\mathbf{AB} = \begin{pmatrix} -2 & 1 & -5 \\ 3 & a & 1 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2a+1 & 3 & 1+5a \\ -5 & 1 & -13 \\ -3-a & -1 & -2a-3 \end{pmatrix}$ $= \begin{pmatrix} -4a-2-5+15+5a & 0 & 0 \\ 0 & 9+a-1 & 0 \\ 0 & 0 & 1+5a+13-4a-6 \end{pmatrix}$	M1	Attempt to find AB with some justification of at least two leading diagonal terms and any other
	$= \begin{pmatrix} 8+a & 0 & 0 \\ 0 & 8+a & 0 \\ 0 & 0 & 8+a \end{pmatrix}$	A1	Correct
	$\begin{pmatrix} 0 & 0 & 8+a \\ 0 & 0 & 8+a \end{pmatrix}$		
	$=(8+a)\mathbf{I}$	B1	Relating correct diagonal matrix to I
		[3]	
9(ii)	\mathbf{A}^{-1} does not exist for $a = -8$	B1	
	$\mathbf{A}^{-1} = \frac{1}{8+a} \begin{pmatrix} 2a+1 & 3 & 1+5a \\ -5 & 1 & -13 \\ -3-a & -1 & -2a-3 \end{pmatrix}$	M1 A1	k B , k not equal to 1 Correct A^{-1} as shown
9(iii)	$\mathbf{A}^{-1} = \frac{1}{12} \begin{pmatrix} 9 & 3 & 21 \\ -5 & 1 & -13 \\ -7 & -1 & -11 \end{pmatrix}$	B1	
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{12} \begin{pmatrix} 9 & 3 & 21 \\ -5 & 1 & -13 \\ -7 & -1 & -11 \end{pmatrix} \begin{pmatrix} -55 \\ -9 \\ 26 \end{pmatrix} = \begin{pmatrix} 2 \\ -6 \\ 9 \end{pmatrix}$	M1 A3 [5]	Correct use of their A^{-1} x , y and z cao, -1 each error
9(iv)	There is no unique solution.	B1 [1]	